0.0
NA
CVE-2022-50261
drm/sti: Fix return type of sti_{dvo,hda,hdmi}_connector_mode_valid()
Description

In the Linux kernel, the following vulnerability has been resolved: drm/sti: Fix return type of sti_{dvo,hda,hdmi}_connector_mode_valid() With clang's kernel control flow integrity (kCFI, CONFIG_CFI_CLANG), indirect call targets are validated against the expected function pointer prototype to make sure the call target is valid to help mitigate ROP attacks. If they are not identical, there is a failure at run time, which manifests as either a kernel panic or thread getting killed. A proposed warning in clang aims to catch these at compile time, which reveals: drivers/gpu/drm/sti/sti_hda.c:637:16: error: incompatible function pointer types initializing 'enum drm_mode_status (*)(struct drm_connector *, struct drm_display_mode *)' with an expression of type 'int (struct drm_connector *, struct drm_display_mode *)' [-Werror,-Wincompatible-function-pointer-types-strict] .mode_valid = sti_hda_connector_mode_valid, ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ drivers/gpu/drm/sti/sti_dvo.c:376:16: error: incompatible function pointer types initializing 'enum drm_mode_status (*)(struct drm_connector *, struct drm_display_mode *)' with an expression of type 'int (struct drm_connector *, struct drm_display_mode *)' [-Werror,-Wincompatible-function-pointer-types-strict] .mode_valid = sti_dvo_connector_mode_valid, ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ drivers/gpu/drm/sti/sti_hdmi.c:1035:16: error: incompatible function pointer types initializing 'enum drm_mode_status (*)(struct drm_connector *, struct drm_display_mode *)' with an expression of type 'int (struct drm_connector *, struct drm_display_mode *)' [-Werror,-Wincompatible-function-pointer-types-strict] .mode_valid = sti_hdmi_connector_mode_valid, ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ->mode_valid() in 'struct drm_connector_helper_funcs' expects a return type of 'enum drm_mode_status', not 'int'. Adjust the return type of sti_{dvo,hda,hdmi}_connector_mode_valid() to match the prototype's to resolve the warning and CFI failure.

INFO

Published Date :

Sept. 15, 2025, 2:15 p.m.

Last Modified :

Sept. 15, 2025, 3:22 p.m.

Remotely Exploit :

No

Source :

416baaa9-dc9f-4396-8d5f-8c081fb06d67
Affected Products

The following products are affected by CVE-2022-50261 vulnerability. Even if cvefeed.io is aware of the exact versions of the products that are affected, the information is not represented in the table below.

ID Vendor Product Action
1 Linux linux_kernel
Solution
Adjust function return types to match expected prototypes to resolve CFI failures and warnings.
  • Update return types for sti_dvo_connector_mode_valid.
  • Update return types for sti_hda_connector_mode_valid.
  • Update return types for sti_hdmi_connector_mode_valid.
  • Compile with CFI enabled to verify fix.
CWE - Common Weakness Enumeration

While CVE identifies specific instances of vulnerabilities, CWE categorizes the common flaws or weaknesses that can lead to vulnerabilities. CVE-2022-50261 is associated with the following CWEs:

Common Attack Pattern Enumeration and Classification (CAPEC)

Common Attack Pattern Enumeration and Classification (CAPEC) stores attack patterns, which are descriptions of the common attributes and approaches employed by adversaries to exploit the CVE-2022-50261 weaknesses.

We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).

Results are limited to the first 15 repositories due to potential performance issues.

The following list is the news that have been mention CVE-2022-50261 vulnerability anywhere in the article.

The following table lists the changes that have been made to the CVE-2022-50261 vulnerability over time.

Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.

  • New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67

    Sep. 15, 2025

    Action Type Old Value New Value
    Added Description In the Linux kernel, the following vulnerability has been resolved: drm/sti: Fix return type of sti_{dvo,hda,hdmi}_connector_mode_valid() With clang's kernel control flow integrity (kCFI, CONFIG_CFI_CLANG), indirect call targets are validated against the expected function pointer prototype to make sure the call target is valid to help mitigate ROP attacks. If they are not identical, there is a failure at run time, which manifests as either a kernel panic or thread getting killed. A proposed warning in clang aims to catch these at compile time, which reveals: drivers/gpu/drm/sti/sti_hda.c:637:16: error: incompatible function pointer types initializing 'enum drm_mode_status (*)(struct drm_connector *, struct drm_display_mode *)' with an expression of type 'int (struct drm_connector *, struct drm_display_mode *)' [-Werror,-Wincompatible-function-pointer-types-strict] .mode_valid = sti_hda_connector_mode_valid, ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ drivers/gpu/drm/sti/sti_dvo.c:376:16: error: incompatible function pointer types initializing 'enum drm_mode_status (*)(struct drm_connector *, struct drm_display_mode *)' with an expression of type 'int (struct drm_connector *, struct drm_display_mode *)' [-Werror,-Wincompatible-function-pointer-types-strict] .mode_valid = sti_dvo_connector_mode_valid, ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ drivers/gpu/drm/sti/sti_hdmi.c:1035:16: error: incompatible function pointer types initializing 'enum drm_mode_status (*)(struct drm_connector *, struct drm_display_mode *)' with an expression of type 'int (struct drm_connector *, struct drm_display_mode *)' [-Werror,-Wincompatible-function-pointer-types-strict] .mode_valid = sti_hdmi_connector_mode_valid, ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ->mode_valid() in 'struct drm_connector_helper_funcs' expects a return type of 'enum drm_mode_status', not 'int'. Adjust the return type of sti_{dvo,hda,hdmi}_connector_mode_valid() to match the prototype's to resolve the warning and CFI failure.
    Added Reference https://git.kernel.org/stable/c/04371a75a58422a301a9ff9ae3babd310ac3bb3f
    Added Reference https://git.kernel.org/stable/c/0ad811cc08a937d875cbad0149c1bab17f84ba05
    Added Reference https://git.kernel.org/stable/c/511b48ee8e4aec2d03d2af06b363d9eb3230b017
    Added Reference https://git.kernel.org/stable/c/6e3c4d3fa5d458d685561ecbaf8daa9dba14979e
    Added Reference https://git.kernel.org/stable/c/8f9941dea3a70b73f2063f9dcc4aaae6af03c5ba
    Added Reference https://git.kernel.org/stable/c/a075c21ee026f4a74f9fce5928ea3c8d18a8af13
    Added Reference https://git.kernel.org/stable/c/b2c92b2a3801b09b709cbefd9a9e4944b72400bf
    Added Reference https://git.kernel.org/stable/c/b4307c7d35e346b909edfdc1f280902150570bb6
    Added Reference https://git.kernel.org/stable/c/e578b0906b6a81479cd5b5b6c848a7096addf5e9
EPSS is a daily estimate of the probability of exploitation activity being observed over the next 30 days. Following chart shows the EPSS score history of the vulnerability.
Vulnerability Scoring Details
No CVSS metrics available for this vulnerability.